

Surgical bleeding: a novel antifibrinolytic strategy

- Hemorrhage is a leading cause of death and cost associated with blood transfusion.
- There is a **need** for the improvement of current treatments of bleeding associated with **surgery**, **trauma**, **intracerebral hemorrhage** (ICH) or other tissue damages.
 - A novel target involved in fibrinolysis has been identified.
 - Proprietary novel compounds to prevent major bleeding have been developed:
 - Small molecule entity (SME).
 - Efficacy: 30,000 times more effective than the currently available therapies.
 - Safety: No thrombus formation and no impact on coagulation.
 - Primary Indication: prophylaxis and acute treatment of bleeding in cardiac surgery.
 - Life plan
- intravenous: cardiac surgery → other major surgeries → trauma and first-aid → ICH
- topical: trauma and first-aid → OTC → veterinary uses

Scope of the problem

- Coronary arteries bypass surgery: 470,000 procedures/year in the 7 Major Markets. Aprotinin withdrawal (\$600M market niche) has generated demand and opportunity for new antifibrinolytics that could significantly reduce the number of blood transfusions.
- Major surgeries: 100-120 million procedures every year in the 7 Major Markets, 2.5-3.5% with significant blood loss. Tranexamic acid (TXA) is used in 35-45% of surgeries.
- Annual expenditures on blood transfusion: \$1.62M-\$6.03M per hospital.
- Hemorrhage is responsible for 50% deaths occurring within 24 h of traumatic injury.
- Intracerebral hemorrhage (ICH; 15% of all strokes), is associated with high mortality (40%) and there is no proven medical or surgical treatment.

Patient needs addressed

Prophylaxis and treatment of major bleeding in patients undergoing cardiac surgery Major bleeding (Guidelines ISTH) in trauma and other clinical and surgical settings.

Current Standard of Care & Competitive Landscape

- Antifibrinolytics are the Standard of Care for hemorrhage in surgery and trauma.
- TXA is the only commercially available agent, partially effective at high doses with significant side-effects. Current products in development are restricted to sealants (topical) and clotting factors (plasma derived compounds with higher risk of viral transmissions and thromboembolic complications).

Product Profile

- A new mechanism of action that impacts on fibrinolytic function and not on haemostasis and coagulation.
- Multifactorial process led to optimized compound CM-352, safe and efficacious in 4 different in-vivo models:
 - i.- Intracerebral hemorrhage (ICH) after early (1h, Figure A) and late (3h) administration ii.- Tail bleeding associated with tPA. Figure B iii.- Hepatectomy (severe bleeding) blood lost reduced by CM-352 (p<0.05)but not by TXA. iv.- Anticoagulant (3 mg/kg Rivaroxaban) associated tail bleeding (p<0.001).
- CM-352: Optimal profile for acute systemic administration (i.v.) with short half-life, ideal for short term control of bleeding.

Collagenase-induced ICH
Mean±SME; n=6 rats/group;
** p<0.01; *** p<0.001 vs saline

* p< 0.05; *** p<0.001 vs saline +++ p<0.001 vs TXA.

Intellectual Property

New antifibrinolytic compounds. WO2014012964 (novel chemical series of proprietary compounds and drug repositioning).

Papers

Orbe J et al. *J Med Chem*. 2015;58(7):2941-57; Orbe J et al. *J Med Chem*. 2015;58(5):2465-88; Rodriguez JA. et al. J Am Heart Assoc. 2017; 6(6); de Miguel I et al. ACS Med. Chem. Lett, 2018;9(5):428-433.

Contact: Business Development | Email: bdcima@unav.es; Tel: + 34 948 194 700